
                                              BITWISE OPERATOR’S 

In Java Bitwise Operators allow access and modification of a particular bit inside a section of the 

data. It can be applied to integer types int,short,char or bytes, and cannot be applied to float and 

double. 

There are 7 operators to perform bit-level operations in Java. 

 1.Bitwise  OR 

 2.Bitwise  AND 

 3.Bitwise Exclusive OR(XOR)  

4. Bitwise Unary NOT 

5. Left Shift 

6.Signed right shift 

7.Unsigned Right Shift            

Operator Meaning Work 

& Binary AND 

Operator 

There are two types of AND operators in Java: the logical && and the binary &. Binary & operator 

work very much the same as logical && operators works, except it works with two bits instead of 

two expressions. The "Binary AND operator" returns 1 if both operands are equal to 1. 

| Binary OR 

Operator 

Like "AND operators ", Java has two different "OR" operators: the logical || and the binary |. Binary | 

Operator work similar to logical || operators works, except it, works with two bits instead of two 

expressions. The "Binary OR operator" returns 1 if one of its operands evaluates as 1. if either or 

both operands evaluate to 1, the result is 1. 

^ Binary XOR 

Operator 

It stands for "exclusive OR" and means "one or the other", but not both. The "Binary XOR operator" 

returns 1 if and only if exactly one of its operands is 1. If both operands are 1, or both are 0, then 

the result is 0. 

~ Binary 

Complement 

Operator 

In binary arithmetic, we can calculate the binary negative of an integer using 2's complement. 

1's complement changes 0 to 1 and 1 to 0. And, if we add 1 to the result of the 1's complement, we 

get the 2's complement of the original number.  

<< Binary Left 

Shift Operator 

As we can see from the image above, we have a 4-digit number. When we perform a 1 bit left shift 
operation on it, each individual bit is shifted to the left by 1 bit. 

>> Binary Right 

Shift Operator 
The signed right shift operator shifts all bits towards the right by a certain number of specified bits. 

It is denoted by >>. 

When we shift any number to the right, the least significant bits (rightmost) are discarded and the 

most significant position (leftmost) is filled with the sign bit. 
 

>>> 
Unsigned Right 

Shift Operator 
 

Java also provides an unsigned right shift. It is denoted by >>>. 

Here, the vacant leftmost position is filled with 0 instead of the sign bit  

1. Java Bitwise OR Operator 

The bitwise OR | operator returns 1 if at least one of the operands is 1. Otherwise, it returns 0. 



The following truth table demonstrates the working of the bitwise OR operator. Let a and b be two 

operands that can only take binary values i.e. 1 or 0. 

 a b a|b 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

 

The above table is known as the "Truth Table" for the bitwise OR operator. 

Let's look at the bitwise OR operation of two integers 12 and 25. 

12  = 00001100(In Binary) 

25 =  00011001(In Binary) 

Bitwise OR Operation of 12 and 25 

00001100 

00011001 

00011101 =29 (In Decimal) 

 

EX: class Main { 
  public static void main(String[] args) { 
 
    int number1 = 12, number2 = 25, result; 
 
    // bitwise OR between 12 and 25 
    result = number1 | number2; 
    System.out.println(result);    // prints 29 
  } 
} 
 

2. Java Bitwise AND Operator 

The bitwise AND & operator returns 1 if and only if both the operands are 1. Otherwise, it returns 0. 

The following table demonstrates the working of the bitwise AND operator. Let a and b be two 

operands that can only take binary values i.e. 1 and 0. 

 

a b a|b 

0 0 0 



0 1 0 

1 0 0 

1 1 1 

 

Let's take a look at the bitwise AND operation of two integers 12 and 25. 

12  = 00001100(In Binary) 

25 =  00011001(In Binary) 

//Bitwise OR Operation of 12 and 25 

00001100 

00011001 

00001000 = 8 (In Decimal) 

 

EX: class Main { 
  public static void main(String[] args) { 
 
    int number1 = 12, number2 = 25, result; 
 
    // bitwise AND between 12 and 25 
    result = number1 & number2; 
    System.out.println(result);    // prints 8 
  } 
} 

 

3. Java Bitwise XOR Operator 

The bitwise XOR ^ operator returns 1 if and only if one of the operands is 1. However, if both the 

operands are 0 or if both are 1, then the result is 0. 

The following truth table demonstrates the working of the bitwise XOR operator. Let a and b be two 

operands that can only take binary values i.e. 1 or 0. 

 

 

a b a|b 

0 0 0 

0 1 1 

1 0 1 



1 1 0 

 

Let's look at the bitwise XOR operation of two integers 12 and 25. 

12  = 00001100(In Binary) 

25 =  00011001(In Binary) 

//Bitwise OR Operation of 12 and 25 

00001100 

00011001 

00010101 = 21 (In Decimal) 

 

EX: class Main { 
  public static void main(String[] args) { 
 
    int number1 = 12, number2 = 25, result; 
 
    // bitwise XOR between 12 and 25 
    result = number1 ^ number2; 
    System.out.println(result);    // prints 21 
  } 
} 

 

4. Java Bitwise Complement Operator 

 The bitwise complement operator is a unary operator (works with only one operand). It is  

denoted by ~. It changes binary digits 1 to 0 and 0 to 1. 

  

      Java Bitwise Complement Operator 

It is important to note that the bitwise complement of any integer N is equal to - (N + 1). For 

example, 

Consider an integer 35. As per the rule, the bitwise complement of 35 should be -(35 + 1) = -36. 

Now let's see if we get the correct answer or not.\ 

 



35 = 00100011 (In Binary)  

// using bitwise complement operator 

 ~ 00100011  

    11011100                                                                   

In the above example, we get that the bitwise complement of 00100011 (35) is 11011100. Here, 

if we convert the result into decimal we get 220. 

However, it is important to note that we cannot directly convert the result into decimal and get 

the desired output. This is because the binary result 11011100 is also equivalent to -36. 

To understand this we first need to calculate the binary output of -36. 
 

EX: class Main { 
  public static void main(String[] args) { 
 
    int number = 35, result; 
 
    // bitwise complement of 35 
    result = ~number; 
    System.out.println(result);    // prints -36 
  } 
} 
 

 

Java Shift Operators 

There are three types of shift operators in Java: 

•   Signed Left Shift (<<) 

•   Signed Right Shift (>>) 

•   Unsigned Right Shift (>>>) 

 

5. Java Left Shift Operator 

The left shift operator shifts all bits towards the left by a certain number of specified bits. It is denoted 

by <<. 

 



 

                                       Java 1 bit Left Shift Operator                                

 

As we can see from the image above, we have a 4-digit number. When we perform a 1 bit left 

shift operation on it, each individual bit is shifted to the left by 1 bit. 

As a result, the left-most bit (most-significant) is discarded and the right-most position(least-

significant) remains vacant. This vacancy is filled with 0s. 

 
 

EX: class Main { 
  public static void main(String[] args) { 
     
    int number = 2; 
    
    // 2 bit left shift operation  
    int result = number << 2; 
    System.out.println(result);    // prints 8 
  } 
} 
 

6. Java Signed Right Shift Operator 

The signed right shift operator shifts all bits towards the right by a certain number of specified 

bits. It is denoted by >>. 

When we shift any number to the right, the least significant bits (rightmost) are discarded and 

the most significant position (leftmost) is filled with the sign bit. 

// right shift of 8 

 8 = 1000 (In Binary)  

// perform 2 bit right shift 

 8 >> 2:  



1000 >> 2 = 0010 (equivalent to 2) 

Here, we are performing the right shift of 8 (i.e. sign is positive). Hence, there no sign bit. So the 

leftmost bits are filled with 0 (represents positive sign). 

// right shift of -8  

8 = 1000 (In Binary) 

 1's complement = 0111 

 2's complement:  

       0111  

           + 1  

_______  

       1000  

Signed bit = 1  

// perform 2 bit right shift 

 8 >> 2:  

1000 >> 2 = 1110 (equivalent to -2) 

Here, we have used the signed bit 1 to fill the leftmost bits. 

EX: class Main { 
  public static void main(String[] args) { 
     
    int number1 = 8; 
    int number2 = -8; 
     
    // 2 bit signed right shift 
    System.out.println(number1 >> 2);    // prints 2 
    System.out.println(number2 >> 2);    // prints -2 
  } 
} 

 

7. Java Unsigned Right Shift Operator 

Java also provides an unsigned right shift. It is denoted by >>>. 

Here, the vacant leftmost position is filled with 0 instead of the sign bit. 

 For example, 

// unsigned right shift of 8 

 8 = 1000 



 8 >>> 2 = 0010  

// unsigned right shift of -8 

 -8 = 1000 (see calculation above)  

-8 >>> 2 = 0010 

 

EX: class Main { 
  public static void main(String[] args) { 
     
    int number1 = 8; 
    int number2 = -8; 
     
    // 2 bit signed right shift 
    System.out.println(number1 >>> 2);    // prints 2 
    System.out.println(number2 >>> 2);    // prints 1073741822 
  } 
} 
 


